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- ABSTRACT

The populanty of rmcropropulsmn system development has led to renewed intergst in the determination of
propulsive properties of orifice flows since micronozzle expans;ons may suffer/high viscous losses at low
pressure operation. The mass flow and relative thrust through an(inderexpandedorifice is measured as a
function of orifice stagnation pressure from 0.1 to 3.5 Torr. Nitrogen, argon, and helium propellant gases
are passed through a 1.0 mm diameter orifice with a wall thickness of 0.015 mm . ‘Near-free molecule,
transitional and continuum flow regimes are studied. - The relative thrust is determined by measuring the
displacement of a nove! thrust stand designed primarily for low operating pressure propulsmn systems. Itis -
shown that the thrust stand deflection is a function of the facility background préssure, and correctlons are
made to determine the deﬂecuon for 2 zero backvround pressure for a nitrogen propellant. A o

Nomenclature o o
a - orifice transmission probability
Y - ratio of specific heats

a - speed of sound (m/sec) :
pe ¢ A - mean free path (m) -

A —area (m?) )
c(y) - constant dependent on ratio of speczﬁc K - viscosity (Ns/m’)

" heass p - mass density (kg/m) . |
c’ — mean molecular thermal speed (m/sec) A - thrust stand deflection (arb. units) -

- discharge coefficient . e

d diameter (m) : subscripts .

& ~ gravitationat constant (= 9.8 m/sec? ) L . :

' Isp — specific impulse (sec) b = facility background

'’k — Boltzmann’s constant (= 1.38 x 10% J/K) fm - free molecule

Kn - Knudsen Number o L - limit (theoretical maximum)

m - mass (kg) meas — experimentally measured

M - mass flow (kg/sec) 0= sltagnat_lon region.

~ number density (m™ p - plenum

; - ;fet:su; (;‘:3‘)’ @) t - orifice or nozzle throat property

Re - Reynolds Number : theor - theoretical

1, - radius of penetration (m) .
't — thickness (m) Supersenpis

T- .
temperamre ® * - orifice plane (sonic) region -
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1. Introduction

In recent years, micropropulsion systems have
been developed to address the need for highly
mobile micro- and nanospacecraft. A wide array
of concepts will require the expansion of
propellant gases through microscale geometries
(e.g. micronozzles). Because of the volume and

power restrictions associated with storing or.

producing high pressures on micospacecraft,

many micropropulsion systems will operate at

relatlvely low pressures in the transitional flow
regime.! The Reynolds number gives a measure
of the flow efficiency in terms of viscous losses.

The Reynolds number at a nozzle throat or an

orifice is vwcn by

Re = )

4 Xower Reynolds number implies higher viscous
flow losses. Microspacecraft propulsion systems
may inherently operate in low Reynolds mumber
regions due to relatively low operating pressures
and'small charaucrxsuc dimensions.

Figure 1 shows the specific impulée as a function
of distance thirough a conical micronozzle
geometry with a throat diameter of d, = 27.7 gm.
Navier-Stokes and Direct Simulation Monte
Carlo numerical simulations have been
performed at two differ ént stagnation pressures

(T, = 300 K). the corresponding Reynolds
pumbers are 1300 and 170 respectively. As Fig.
1 shows, the specific impulse at the nozzle exit is
approximately 14% higher than at the nozzle
throat for Re” =
impulse at the exit is only about 5% higher than
at the nozzle throat for Re” = 130. The reduction
of efficiency in the micronozzle geometry as the
Reynolds numbzar decreases is due to viscous
lossw near the nozzle walls

There is current!y u largz =ffort being devoted to
the fabrication of mirronozzles with throat
diameters on the order of ope to tens of
micrometers (microns).™ As Fig. 1 indicates,
nozzle expansions may not be justified when
weighing the increase in performance versus
fabrication complexity.
pumbers, the micronozzle geometry may in fact

For cold gas operation

1300. However, the specific -

At low Reynolds’

degrade performance, and expansion of
propellant from a simple thin walled orifice may
be a good compromise between efficiency and

system complexity. ~ “Some - microelectro- g, , 4pcd
mechanical systems (MEMS)-fabncated nozzle h j‘? Le.

. geometries involve planiF or fectangular throats  "3F?
easi 4 ‘FL

(i.e. not conical)? Numerical studies have
shown that flows generated near the side walls
can result in even higher inefficiencies.® :

The flow complexities from sonic orifices have
been studied for several years.™!! However, the
determination of the thrust generated from gas
expanding through an orifice is an area that has
received little attention. The advent of
micropropulsion systems has renewed interest in
the determination of propulsive properties of
orifice flows since micronozzle expansions
appear to have major viscous losses

This manuscript explores the thrust generated by
an orifice expansion at relatively low Reynolds
numbe® Besides'a propulsion system in its own P#79
right, these orifices are also being investigated as

-2 reliable means of calibrating mxcro—Newton
'thrust stands 2

2. Theory

- To assAess‘the performance of the orifice

expansion in terms of propulsive parameters,
properties at the entrance plane of the orifice are
calculated from known stagnation values. The
ratios of pressure, density, temperamrz and

velocity for inviscid flow are
N 74
p [ 2 Vi -(2)
Po _7'*'1_" L
_—g:'—, » .-}/y_l . (3)
Po |7+1] . S
Pom -
= 4
fo=2r @
2
dy.r_2 5
@ T, v+l
The theorencal inviscid flow value for the
orifice mass flow is
M=p*d A, ®




Viscous effects can be meﬁsured in terms of a'

discharge coeft' cient defined by

Cb= 1‘:[111('1.'.\' L o - (7)

"'_[lheor '

where M,,,w, is calculated from Eq. (6). The
theorencal thrust produced by the orifice is then
given by

CS=Al"+ P4 (8)

5:(2__;.1’_ A=dy)p.4 )
L2, Pu] ' C('Y)Po t

"The constant c(y) is equa! to 1.16 and 1.14 for y

= 1.4 and 1.67 respectively. Therefore, it is

expected that the thrust produced by the-orifice-

gas -flow -is -relative!y independent of the
propellant. S e

. A measure of the propulsive efficiency is given -

by the specmc impulsc a5

f”(‘y+1) lc N

1sp*=_.5_7____«' LT 0
Mg g .
For free molecule finw. he Knudsen number
defined by
2, ‘
Fr, = b 3 11y
: - d, _ o

is relatively hish (Kn .2 10). This is

accomplished at very !ow stagnation pressure
operation where the molzcule mean free path is

larger than the orifi:: Jiameter.” The free -

~molecule mass flow, thiust .md specific impulse
are given by -
| 8T,
M= f"f = m_y a2
Sp = af&A, (13)

T

3. Experiment

The orifice used in this study has a diameter of 4,
= 1.0 mm and a thickness of t, = 0.015 mm
giving a vd = 0.015.- For t/d = 0.015, the
transmission probability (¢ in Egs. (12) and (13))
is very close to unity.”® The orifice is machined

by conventional means'in a Tantalum shim
which is attached to an aluminum plenum - as

shown in Fig. 2. The aluminum plenums are
attached to a “torsional thrust stand shown in Fig
3. The thrust measurements involve sensing the
angular displacement resulting from a torque
(thrust force) applied to a damped rotary system.
The present method for detecting angular
deflection is to measure the linear displacement
of a known radial distance using a linear voltage

differential transducer (LVDT) by Macro
* Sensors. The total linear movement of the arm is

approxmxately 0.5 mm for a 2mN thrust level

which' corresponds to less than 0.1° angular’

deflection.  The detailed operational
characteristics of this thrust stand is the toplc of
earlier work. 7 :

The thmst stand is placed inside the CHAFF-II

facility, a steel vacuum chamber pumped by a
Roots blower’ system with a pumpmg speed of -
2000 L/sec for nitrogen. Ultimate- pressures -

achievable in CI-IAFF 1 are approximately 1.0 x
10“‘ Torr.

The propeﬁanth is introduced into the orifice
plenum through an adjustable needle valve

located downstream of am MEKS® mass flow .

meter. In the expenmenml configuration, the
mass flow mieter operated in the continuum

regime through the pressure range studied. -
Nitrogen, argon and helium are used-as

propellant gases in this study.
4. Results

Figure # shows the dxs'chérge' coefficient as av

function of the Reynolds number for nitrogen.

At lower Reynolds numbe? the measured valnes S

should asymptotically approach the theoretical

free molecule limit of 0.583. For the range of -
Reynolds numberYshown in Fig. 4, the orifice §

stagnation pressure ranges from 0.1 to 3.5 Torr.

‘As expected, the discharge coefficient

T k . :
T s A D)




’ asymptotes towards unity for higher Reynolds
numbe;.\

The measured linear deflection from the thrust
stand mounted LVD7T is shown as a function of
orifice stagnation pressure for nitrogen
propellant in Fig. 5. Using Eq. (8) with the
measured mass flow and stagnation pressure, the
theoretical range of thrust shown in Fig. 5 is
from approximately 7.9 uN (p, = 0.1 Torr) to
430 N (p, = 3.5 Torr). Similar plots are sShown
for argon and helivm in Figs. 6 and 7,
respectively.  Figure 8 shows the nitrogen
deflection as a function of mass ﬂow.

As seen in Fig. 9a, ihe data for nitrogen and
argon can be ﬁt by Lic same straight line as
expected from Eq. (9). However, this level of
agreement is only true for propellants which
have a similar Reynoids number for a given

‘stagnation pressure (i.e. similar viscous effects as

a function of p,). Because the orifice Reynolds
number (Eq. (1)) is a luctor of three lower for
helium than nitrogen at a given ‘stagnation

" - pressure, it is expected that the thrust (defléction)

would be somewhat lower for helium due to
viscous effects as shov: in Fig. 9b.

. The data for helium xr! nitrogen are shown in

Fig. 10. The discrepancv in the data is indicative
of the fact that the heli:n tlow is more rarefied
(higher Knudsen numbe) for a given stagnation
pressure. For example, ‘or nitrogen flow at p, =

0.1 Tormthe Krudsen number is approx:mate]y"

0.5. For helium. the Knudsen number is
approximately i.4 for the same stagnation
pressure. This indic:ucs that viscous effects are
more important for heiivm flow than nitrogen at
a given stagnation pressure.

It is known that the dutl:ctien for a given orifice
stagnation pressure is dependent on the

background pressure o! the facility. Figure 11 |

shows the measured J¢!'ection for g'iveu orifice
stagnation pressures as » lunction of the chamber
background pressure. The absolute deflection
for a given stagnation nressure decreases as' the
background pressure increases. The slope and

intercept of the data is used 10 correct the data in -

Fig. 5 to a zero bacigzround pressure in the
following section.

5. Discussion

?
Te W

Figure 12 shows the effects of rarefied flow on
the measured thrust (deflection) from the orifice.
For helium, the flow Knudsen number at p, = 0.1
Torr is approximately 1.4. The helium deflection
data in Fig. 12 shows the theoretical lines for
free molecule and inviscid continuum thrust.
The data is bounded by the free molecule and
continuum solutions. At the lower operating
pressure, the data closely follows the free
molecular slope and tends toward the inviscid
continuum $olution at higher pressures. The data
does not quite asymptote to the inviscid solution
at the maximum Reynolds mumber (p, = 3.5
Torr) of about 27.

Figure 13 shows a similar result for nitrogen
propellant flows. At the higher operating
pressures, the nitrogen flows closely follow the
inviscid continuum solution: - This is consistent
with the discharge coefficient results shown in
Fig. 4 which indicates a discharge coefﬁczent
near umty for Re® > 40.

Facili keround e

Because the facility background pressure is made
up of two components (laboratory air and
propellant), corrections to the thrust stand
deflections can only be approximated for the
nitrogen propellant cases wheré the propeliant
and the laboratory backgrounds are similar. *

The mechanism for lower thrust deflection as a
function of increased background pressure is
shown schematically in Fig. 14. For no orifice
flow, the background pressure exerts an equal
force on the front and back sides of the orifice
plenum (equilibrium). As flow is introduced
through-the orifice, the resulting jets acts like an
ejector pump similar to that of the oil vapor in a
vacuum diffusion pump.'’*'* Collisional
“removal” of the background gas by the orifice
plurne results in-a lower background pressure on
the jet side of the plenum(then) on the back side.

- This pressure difference eXerts a force on the

orifice in a direction opposite of the thrust vector
produced by the jer. Since the gas density in the
plume is relatively high compared to the
background gas density in the vicinity of the
orifice, the source flow can effectively prevent
background molecules from penetrating the

orifice plume and striking the front surface of the

orifice plenum for reasomable background
pressures (p, < 1 x 10° Torr).”® This suggests




that the deflection as a function of the
background pressure should be linear as a first
order approximation as Fig. 11 indicates, or

dA
— = constant
b

(AP»=°)“(“m)=PbAm' (15)

The effective area, Ay, is a measure of the area
being utilized to causc the deflection opposite to
the thrust vector. Assuming that the background
pressure in front of the orifice plenum is zero,

- the force exerted on the back side of the orifice

plenum (A, = 22.75 ¢m®) is approximately 100
gN for p, = 3.3 x 10™ Torr. Therefore, the

_ background pressure “ncgative thrust” effect can

be 2 significant fraction of total measured thrust
produced by the orifice.

Figure 15 shows the nitrogen thrust stand
deflection for a corrected zero background
pressure. This data is derived from the slopes of
the deflection versus hackground pressure curves
inFig. 11 and the data obtained in Fig. 5.

6. Conclusions
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